

Targa Midstream Services, L P

Maintenance & Operations Improvement Program Drives Methane Reductions

13th Annual Implementation Workshop October 23-25, 2006 Houston, TX

Overview

- **★** A Different Approach
- **★**Program Specifics
- *Results

It all boils down to.....

CHANGE THE PEOPLE
OR
CHANGE THE PEOPLE

A DIFFERENT APPROACH

Program is:

BEHAVIORAL FOCUSED

work process improvements, right behaviors established, accountability, communication

VS.

A CAPITAL INVESTMENT

new, more efficient equipment, technology or engineering

BEHAVIORAL APPROACH

- Set Expected Behaviors Beyond Goals and Objectives but expected actions
- ★ Set Antecedents, (the plan or approach) Specific steps or processes to get expected behaviors
- Measure / Communicate Results Participants track results, discuss incidents and report out monthly
- **★** Hold Each Other Accountable Participants own / police

Duh!

Real "leverage" is achieved when everyone has skills, knowledge and information ... and is empowered and held accountable to ACT.

Program Specifics / Details

WITHIN TARGA IT'S CALLED

★ OIP – OPERATIONS IMPROVEMENT PROGRAM

 Focus on behaviors and processes specific to our Operators that improve operational margins and performance

★ MIP – MAINTENANCE IMPROVEMENT PROGRAM

Focus on behaviors and processes specific to our Maintenance
 Technicians to improve equipment efficiency and reliability

OIP / MIP Overall Objectives

MIP

- Equip. operating within OEM / design specs
- #1 and #2 impact equipment established
- ★ Scheduled vs unscheduled >75%
- Correct consistent PMs performed
- Failure rates reduced by 2/3 (target of <5 / unit / yr)</p>
- Maximize equip. utilization (>95% HP utilized)
- Top five Worst Actors reviewed and addressed monthly
- RCFAs performed on major / repetitive incidents

OIP

- Discuss, understand and address, operating incidents (flaring, upsets)
- **★** RCFAs on major / repetitive incidents
- **★** Operate within design parameters
- Surveillance rounds defined and completed
- Reduce fuel / energy consumption (site specific)
- Maximize margin (site specific)
- Improve balance across facility (site specific)
- Reduce / understand chemical consumption and costs (site specific)

REQUIRED MIP BEHAVIORS

(The actions required to get the results we are after)

- ★ Complete data and equipment in Maximo
- ★ Impact Analysis completed for Assets and #1 and #2 identified in data base
- ★ PM Job Plan completed as required
- ★ Weekly equipment checklist completed and reviewed against OEM operating specs
- Lube oil samples taken and analysis reviewed monthly
- * Attend MIP meetings / report on assigned equipment
- ★ Top five Worst Actors tracked, addressed and discussed

Weekly Check List East 7044 Serial # 336249									
Date Performed February & March 2006									
Employee Name Rodney Flemmons									
,	OEM	W K 1		W K 2		W K3		W K 4	
Date		21-Feb		1-Mar		14-Mar		28-Mar	
Engine Hours		28558		28583		28712		28992	
RPM	1200	900		1000		945		1025	
Record Governor Position		36		52		43		5 5	
Water Temperatures In & Out	180-210	168-180		175-185		170-177		165-173	
Oil Temperatures In & Out	180-210	170-178		175-188		166-180		173-181	
Oil Pressure	40-55	58		57		57		5 2	
Oil Pressure Differential	24psig	8		8		8		8	
Lube Oil Consumption	6gal/24hrs	6944		6954		6981		7002	
Fuel Supply pressure to regulators	24-50psig	20		20		20		20	
		L. Bank	R. Bank	L. Bank	R. Bank	L. Bank	R. Bank	L. Bank	R. Bank
Fuel Supply pressure to carburetors	3-5" H2O	4.1	3	3.4	2.8	3	2.7	3	2.4
Manifold Pressure/Vacuum		4.25	4.45	4.62	4.87	4.08	4.2	4.57	4.66
Record Air Filter differential pressure		-1.8	-1.4	-2.1	-2.1	-2.1	-1.5	-2.5	-2
Air Fuel Ratio Controller Target Voltage		0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
O 2 sensor voltage reading		0.68	0.7	0.72	0.68	0.71	0.7	0.68	0.71
Stepper Position		1207	1126	1142	1119	1117	1118	1123	1119
Catalytic Convertor temperature in - out	Max. 1250F	989-992		1036-1036	-	991-1009		1037-1046	3
Crankcase Pressure	" H 2 0	1.6		3.8		-3.2		3	
Establish correct ignition timing (Task 1.12)		20							
Ensure ignition is firing on all cylinders									
Comments:									
2-3 Changed 6L head									
2-9 Rebuilt fuel regulators									
Cates ran emissions 3-10 Passed									
WEEKONE 2-21									
COMPRESSOR									
Oil Pressure		61							
Oil Pressure Differential		2							
Compressor Cylinder Temperatures		#1 cc	#2 cc	#3 cc	#4 cc				
		208	196	210	197				
Compressor Operating Pressure		Suction	Interstage				ļ		
		180	410	920			ļ		
Scan compressor valves and record	# 1 HE	# 2 H E		# 1 C E	# 2 C E				
# 1 Compressor Cylinder Suction	86	88		90	92				
# 1 Compressor Cylinder Discharge	179	180		177	179				
# 2 Compressor Cylinder Suction	7 9	78		86	83				
# 2 Compressor Cylinder Discharge	182	185		180	181				
# 3 Compressor Cylinder Suction	8 9	91		94	97				
# 3 Compressor Cylinder Discharge	181	178		180	182		Ī		
# 4 Compressor Cylinder Suction	83	83		88	8 5				
#4 Compressor Cylinder Discharge	184	185		186	185				
" Toom product of mider bisonarye			1					I.	1

Equipment that received the greatest amount of surveillance had the fewest failures

This is an excellent example the maintenance improvement effort changing maintenance practices and becoming embedded in the organization

⁽¹⁾ Percent Surveillance = (number of completed surveillance sheets)/(number of surveillance sheets that should have been completed)

⁽²⁾ Failure data collected from DMMS

MIP MEASURES

(HOW WILL WE MEASURE PROGRESS/SUCCESS?)

- **★ UNIT INCIDENT RATE**
- **★ PM COMPLETION %**
- **★** % OF SCHEDULED VS UNSCHEDULED WORK
- ★ MEAN TIME BETWEEN FAILURES / REPAIRS (especially after PM)
- **WORK ORDER AGING**
- **WORST ACTOR LISTS**
- **ANALYSIS REPORT on HP UTILIZATION / CONDITION**

2002 - 2005 Scheduled vs Unscheduled Work Orders

Liveration lated Scheduled

Jan - Dec. 2002

54% - unsched

46% - schedule

Jan - Dec. 2003

48% - unsched

52% - schedule

Jan - Dec. 2004

44% - unsched

56% - schedule

Jan - Dec. 2005

40% - unsched

60% - schedule

REQUIRED OIP BEHAVIORS

(The actions required to get the results we are after)

- Complete data and incidents input into Maximo
- ★ Incidents tracked, documented and reviewed (flaring, upsets, off spec, instruments in manual vs auto). \$\$ values established for each
- ★ Key Operating parameters tracked, reviewed and analyzed (recoveries, fuel / energy consumption, residue BTU, product specs, etc)
- Design parameters for equipment identified for operating surveillance purposes
- **★** Surveillance procedures completed as required for operating equipment
- **RCFAs** conducted on significant operating events
- Operating Procedures followed (start-up / shutdown procedures)
- Attend monthly OIP meetings and report on assigned area

OIP MEASURES

(HOW WILL WE MEASURE PROGRESS/SUCCESS?)

- **★** Fuel (energy) consumed / MCF
- **★** Design Capacity vs. actual capacity
- **★** Margin cents / MCF
- Recoveries (GPM)
- **★** Flared volumes
- ★ Chemical usage and associated cost
- Cost of Incidents

	Incidents	Call outs	Person(s) Called out	Flared vol							
				Wadd ell low field	Resi due P-44	Acid Gas P-154	North Line P- 167	Wadd Line P-168	Monah ans Line P- 169	Cond Gas P-178	Monah ans High Pressu re P- 16211
1		Block 42, Waddell 7,8, Ponderosa 6, Station 2, Hutch Sealy	Arriaga, Guevara, Lord, Teague								
2											
3	Enterprise valve shut, no reason (436)										
4											
5											
6											
7		Waha, Monhans plant 9	Graves								
8											
9		L&H 6, Janelle Edwards, Ponderosa 11, 12	Graves , Arriaga								
10											

FLARING SUMMARY

Month	GG Flared - MCFD	Residue Flared - MCFD	Acid Gas Flared	Total Flared - MCFD	% of Inlet Flared	Opportunity Cost - \$
January	0	0	0	0	0.00%	\$0
February	474	0	1,967	474	0.01%	\$0
March	1,019	0	416	1,019	0.03%	\$8,152
April	0	0	0	0	0.00%	\$0
May	1,989	885	854	2,874	0.08%	\$17,819
June	11,723	7,583	2,172	19,306	0.51%	\$108,114
July	12,658	2,879	3,099	15,537	0.40%	\$99,437
August	10,343	589	602	10,932	0.31%	\$76,524
September	0	0	0	0	0.00%	\$0
October	0	0	0	0	0.00%	\$0
November	0	0	0	0	0.00%	\$0
December	0	0	0	0	0.00%	\$0
Total YTD	38,206	11,936	9,110	50,142	0.17%	YTD Opportunity Costs

THE BOTTOM LINE – MORE METHANE TO MARKET AND MORE REVENUE

Area A

	2000	2001	2002	2003	2004	2005		
Fuel % of Wellhead	8.80%	8.57%	8.41%	8.40%	7.95%	8.04%	Rate of	Total
Flare % of Wellhead	1.50%	1.91%	1.12%	0.77%	0.67%	0.67%		Savings
Differential from previous year							2000 - 2005	
Wellhead change		-3.50%	-4.25%	-2.14%	-1.84%	-4.26%	-15.03%	
Total Fuel & Flare % Change		-1.87%	-12.92%	-5.84%	-7.71%	-3.25%	-28.15%	
\$ Saved		-\$1,167,020	\$4,307,312	\$2,618,318	\$4,428,582	-\$936,747		\$9,250,445
MMBTU Saved		-282,393	1,473,155	547,431	819,282	-130,287		2,427,188
Fuel % Change		-6.01%	-6.06%	-2.26%	-7.06%	-3.21%	-22.37%	
\$ Saved		\$1,536,267	\$735,430	\$73,409	\$3,609,210	-\$899,695		\$5,054,621
MMBTU		371,742	251,526	15,348	667,699	-125,134		1,181,181
Flare % Change		22.36%	-43.72%	-32.69%	-14.77%	-3.75%	-61.97%	
\$ Saved		-\$2,703,287	\$3,571,882	\$2,544,909	\$819,372	-\$37,052		\$4,195,824
MMBTU		-654,135	1,221,629	532,083	151,583	-5,153		1,246,007

*Fuel - 100% methane

*Flare - 95% methane

Area B

Alea D							_	
	2000	2001	2002	2003	2004	2005		
Fuel % of Wellhead Flare % of Wellhead	10.59% 0.39%	10.27% 0.82%	8.81% 1.10%	7.60% 0.31%	7.12% 0.17%	6.92% 0.08%	O la igo	Total Savings
Differential from previous year							2000 - 2005	2000 - 2005
Wellhead change		3.91%	9.32%	25.83%	13.76%	6.55%	73.27%	
Total Fuel & Flare % Change		4.88%	-2.32%	42.00%	4.86%	2.23%	10.28%	
\$ Saved		-\$145,356	\$1,341,112	\$4,858,370	\$1,870,475	\$1,245,356		\$9,169,957
MCF Saved		-36,333	#REF!	977,444	343,911	175,156		1,918,776
Fuel % Change		0.77%	-6.27%	8.57%	6.52%	3.53%	13.10%	
\$ Saved		\$454,623	\$1,663,702	\$2,934,749	\$1,461,056	\$848,993		\$7,363,123
MCF		113,638	568,909	590,435	268,634	119,408		1,661,024
Flare % Change		115.28%	47.38%	-64.75%	-36.22%	-51.49%	-65.40%	
\$ Saved		-\$599,979	-\$322,590	\$1,923,620	\$409,418	\$396,363		\$1,806,832
MCF		-149,972	-110,311	387,009	75,277	55,747		257,750

*Fuel - 100% methane

*Flare - 95% methane

Contact Information

Kim Peterson

Manager, Engineering

Permian Basin & North Texas

Targa Midstream Services, Limited Partnership

Phone: (713)-584-1472

Email: kpeterson@targaresources.com

